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The problem of shearing along axial plane foliations 
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Abstract--The structural significance of axial plane fohations cannot be understood unless we make a distinction 
between rotation of the material plane foliation and rotation of the geometrically defined X Y-plane of the strain 
ellipsoid. If the foliation rotates as a material plane at any stage of deformation, then its final orientation will be 
different from that of the X Y-plane. It is suggested that reorientation of foliation takes place by some combination of 
the formation of foliation (e.g. re.crystallization) along the X Y-plane and passive rotation of the material plane 
foliation in the same continuous deformation. The deviation between the foliation and the X Y-plane is then much 
less than 5 degrees. However, because of this deviation, a considerable amount of shear strain may develop along the 
foliation. The analysis, thus, explains how a foliation can be approximately parallel io the X Y-plane and yet be a 
plane of sheanng. 

INTRODUCTION 

THE AXIAL-PLANE foliation is usually regarded as a 
structure which develops essentially parallel to the X Y- 
plane of the strain ellipsoid. Field evidence clearly in- 
dicates that the foliation is approximately perpendicular 
to the direction of maximum shortening. However, in 
certain foliated rocks, cross-cutting markers are found to 
be offset along discrete foliation surfaces (Hills 1945, 
Naha & Ray 1972). As Hobbs et  al. (1976, p. 237) point 
out: "We are thus faced with the problem of explaining 
how a foliation can be a plane parallel to which shearing 
displacements have occurred, and yet be parallel, or 
approximately parallel, to a principal plane of the strain 
ellipsoid (a principal plane of strain is a plane of no shear 
strain)". The following discussion is an attempt to analyse 
this problem for the general case of rotational 
deformation. 

GENERAL CONSIDERATIONS 

The argument is often given that the foliation parallel to 
the X Y-plane cannot have any shearing on it because, by 
definition, the X Y-plane is a plane of zero shear strain. 
Apparently, the argument sounds sufficiently straightfor- 
ward. However, when we go deeper into the problem, we 
find that this argument is rather confusing. 

The orientations of the principal axes of strain are 
defined as the initial orientation of that set of mutually 
perpendicular material lines which remain mutually per- 
pendicular at the close of deformation. The angle between 
their final and initial positions is defined as finite rotation 
(W). The lines do not remain mutually perpendicular in 
any intermediate stage of rotational deformation ; hence 
there must be shear strains corresponding to these lines 
throughout the entire course of deformation. The prin- 
cipal axes and their final positions are so defined that the 
sum of the shear strains becomes zero at the end of the 
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period of deformation. It is obvious, then, that at some 
stage of progressive deformation, the sense of shear 
corresponding to these lines is reversed, so thaL at the 
close of deformation, the absolute value of positive shear 
exactly balances the absolute value of negative shear. At 
the stage of deformation when reversal in the sense of 
shear takes place, the orientations of the lines do not 
coincide with those of the principal axes of infinitesimal 
strain. In other words, this orientation does not bisect the 
angle between the initial and final orientations of the 
principal axes of strain. This is shown below by an 
analysis of the different stages of simple shear. 

In Fig. I, a unit square with sides OA and OB is shown 
to be deformed by simple shear (?) in the x-direction into a 
parallelogram with sides OC and OD. The initial line OA 
and the corresponding deformed line OC make with the x 
coordinate axis the angles a and ,/, respectively. The right 
angle AOB has changed to the angle COD or ( ~ -  g,'), 
where g,' is the shear angle, y'( = tan ¢') is the shear strain 
corresponding to the lines OC and OD in the deformed 
state. Tfien : 

Y' y2 
= -~-" sin 2a + y cos 2a (1) 

(Nadai 1950, eqns. 13-44, p. 147). 
It should be noted that y' is the shear strain correspond- 

ing to a pair of lines whose initial orientations were ,, and 
(~ + ,,), while ? is the amount of simple shear correspond- 
ing to the coordinate axes x and y. If ~ and (~ + ~) are 
regarded as the initial and the final positions of the 
principal axes of strain, then at the close of deformation y' 
should be zero. From (1), this condition is given as: 

5-' sin 2~ + cos 2:c = 0 (2) 
2 

or"  

- 2  
Y - tan 2~ (3) 
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Fig. 1. (a) Deformation of the square OAEB into the parallelogram 
OCFD by simple shear. The dirt-~:tion of simple shear movement is along 
the x-axis. OA and OB are the initial orientations of two lines at angles of 
:t and ~ + ~,, respe~twely. The angle between OC and  OD is (~ - ¢,'), so 

that tan ~,' is the shear strain corresponding to these two lines. 

This is the value of simple shear in the x-direction at the 
close of deformation when the material lines are once 
again mutually perpendicular. 

Next, we seek to find the stage of simple shear (say,)'a) 
at which sense of shear along the material lines is reversed. 
At this stage y' itself will not change its sign; its value will 
remain momentarily stationary (point A in Fig. 2). This 
condition is: 

d?__~' = 0. (4) 
dy 

By substituting the expression for y' from (1) into (4), we 
find that 

- 1  
~',4 - tan 2-, (5) 

This is the value of simple shear at which the sense of shear 
along the material lines is reversed. A comparison of (5) 
with (3) shows that 

1 
"/a = ~)" (6) 

Thus, the reversal in the sense of shear takes place when 
the deformation has progressed exactly halfway. This first 
half of deformation rotates the material line through an 
angle of more than ~- W, W being the angle between the 
final and initial positions of the principal axes. 
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Fig. Z Variation of shear strain 3" corresponding to two lines in simple 
shear. One of the l ines was  initially at an angle of 60 ° with the x-axis../is 
the amount  of simple shear. The lines were mutually perpendicular at the 
beginning and at the end (point B) of the deformation. The maximum of 
the absolute value of-/' is obtained when the deformation has progressed 
exactly halfway (point A). The sense of shear is reversed at this point. 

From the analysis given above, it is clear that ),' can 
vanish only when the material Lines rotate through the 
entire angle W. For our purpose, a point of crucial 
importance is that the foliation could nerer be parallel to 
the initial orientation of the principal axes of strain. If the 
foliation finishes up parallel to the X Y-plane of the strain 
ellipsoid, then its initial orientation must lie somewhere 
between the orientation of the X Y-plane of the finite strain 
elLipsoid and the orientation of the XY-plane of the 
infinitesimal strain elLipsoid. Thus, the rotation of the 
foliation cannot be more than ~ W. In contrast, a material 
line which was once parallel to the initial orientation of 
the principal axes of strain must have rotated through the 
entire angle of W at the close of deformation. Indeed, if we 
assume that the foLiation is all the time parallel to the 
changing orientations of the X Y-plane of the strain 
elLipsoid, then, we cannot meaningfully raise the question 
about the presence or absence of shear strain along it 
because, in that case. the foliation would not be defined by 
the same material plane in successive instants of time. 

If reorientation of a foLiation takes place by rotation of 
rigid grains in a matrix, the directional change in their 
preferred orientation may be different from that of a 
passive (Turner & Weiss 1963, p. 391 ) material plane. The 
equations for rotation of isolated rigid elLipsoidal grains 
embedded in a deformable matrix (Jeffery 1922, Ghosh & 
Ramberg 1976, eqns. II, 12 and 13, Ghosh 1977, fig. 13) 
are quite different from that of the passive rotation of 
markers. However, if the ratios of the longest and shortest 
axes of the grains are large ii.e. more than 5), the values of 
their rigid rotations come very close to that of the passive 
rotation of a corresponding marker (Ghosh & Ramberg 
1976, p. 23). If a large number of rigid grains are closely 
spaced within a matrix, the corresponding equations of 
rotation are likely to be different from those of a single 
isolated grain. There is, however, no reason to believe that 
the longest axes of the grains will continuously trace out 
the orientations of the X-axes of the bulk strain ellipse. 
Preliminary simple-shear tests carried out in the Depart- 
ment of Geological Sciences of the Jadavpur University 
suggest that, when strongly elongate rigid inclusions are 
closely packed within a viscous matrix, the directional 
change of their preferred orientation is virtually in- 
distinguishable from that of a corresponding passive 
marker plane. In these tests, the intermediate axes of the 
inclusions were parallel to the axis of simple shear. 

But, after all, what do we really mean when we say that 
the axial plane foliation is parallel to the X Y-plane? In the 
general case of rotational deformation, the orientation of 
the X Y-plane continuously changes. A material plane. 
which was once parallel to the X Y-plane, can never again 
coincide with it at any other stage of progressive defor- 
mation. Do we, then, mean that the foliation never 
behaves as a material surface during progressive defor- 
mation. In other words, do we mean that the elongate 
grains such as the flakes of mica, never rotate as material 
entities for any instant of time, but crystallize anew in an 
infinitesimally different orientation at successive instants 
of progressive deformation? Such wholesale instan- 
taneous recrystalLization is unlikely, especially when the 
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foliation is marked by coarsely crystalline grains. Cer- 
tainly, the alternative, that reorientation of foliation is 
achieved by some combination of crystallization along the 
X Y-plane and passive rotation of the material plane of 
foliation, is much more acceptable (Bayly 1974). We can 
think about different kinds of such combinations. For 
instance, the foliation may acquire a well-defined charac- 
ter and be parallel to the X Y-plane at a certain stage of 
deformation; with continued deformation, the foliation 
may rotate as a material plane. Alternatively, develop- 
ment of the foliation along the X Y-plane and its rotation 
as a material plane may take place in alternate steps. In 
either case. rotation of the material plane of foliation will 
be accompanied by a shear strain along it. In the next 
section an attempt will be made to determine the maxi- 
mum possible angular divergence between the foliation 
and the X Y-plane and to determine the resulting shear 
strain on it. It should be noted that the rotation of the 
foliation need not be entirely post-crystalline; the fo- 
liation may continue to be regenerated parallel to the 
rotating material plane by syntectonic mimetic 
crystallization. 
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4, i 

Fig. 3. Variation of(0' - 0),,,,, with s,, where (0' - 0) , , , ,  is the maximum 
possible angle between the foliation and the X Y-plane in combined 
pure and simple shears. Initially, 0' and 0 coincided with the major axis 
of the infinitesimal strain ellipsoid for each value of sr With progressive 
deformation the foliation rotated as a material plane. Note that the 
maximum value of (0' - O) is obtained when s, -- 0. This value is 5.15 

degrees. (0' - 0) decreases as s, increases. 

tan 0 = tan 0 o • exp ( -ys , )  (9) 

exp (ys,) + 1 sinh (ys3 tan 0o 
Sr 

DEVELOPMENT OF FOLIATION ALONG THE 
X Y - P L A N E  AND ITS SUBSEQUENT ROTATION 

AS A MATERIAL PLANE 

If the foliation is initiated parallel to the X Y-plane and 
is subsequently rotated as a material plane in the same 
continuous deformation, the maximum possible angular 
divergence between the X Y-plane and the foliation will 
always be small. Ghosh (1975, p. 207) showed that in 
simple shear deformation, this divergence will always be 
less than 5.15 degrees. It will be shown here that, if the 
deformation is by combined pure shear and simple shear, 
then this angular divergence will be still smaller (Fig. 3). 

For combined pure- and simple- shears, we choose the 
following particle-path equation: 

1 
x = exp (~)x o + --(sinh ~)Yo (7) 

Sr 

y = exp ( -  G)Yo. 

where G is the natural strain for pure shear and s, is the 
ratio (~/~) of the rates of pure shear and simple shear 
(Ramberg 1975, Ghosh & Ramberg 1977, p. 23). It may be 
noted that e~ = 7s,. Then, orientations of the principal 
axes of the finite strain ellipse are given by the equation: 

tan 20' = 

1 
-- {1 - exp ( -  27s,)} 
Sr 

sinh (~s,) + {exp (2ys,) - exp ( - 2ys,)} 

(8) 

If 0 o and 0 are the initial and final positions of a marker 
line on the X Y-plane. we obtain the following relation 
from (7): 

In order to determine the maximum possible difference in 
angle between the XY-plane and the foliation, it will be 
assumed that the schistosity had initially developed 
parallel to the X Y-plane of the infinitesimal strain 
ellipsoid. For combined pure shear and simple shear, the 
orientation (0o) of the X Y-plane of the infinitesimal strain 
ellipsoid is given by the following equation: 

Oo = ~ t a n  -~ • (101 

If, from this initial position, the foliation rotates as a 
marker plane, then its final orientation, 0, can be obtained 
from (9) and (10): 

t a n O =  

e x p ( -  ys,).tan ~tan - t  

exp (Ts,) + -~, sinh (~s,) . t an  ~ t a n -  1 

(11) 

( 0 ' - 0 )  can, then, be calculated from (8) and (11). The 
values of (0' - O) w i t h  progressive deformation, always 
shows a maximum (Fig. 3), unless of course, the defor- 
mation is by pure shear, in which case 0' and 0 coincide. 
Numerical calculations show that the maximum value of 
(0' - 0) is obtained when s, = 0 (Fig. 3). As s, increases, 
the maximum angular divergence decreases (Fig. 3). 
Figure 4 shows the variation of (0' - O) for s, = 1. T h e  
maximum angular divergence in this case is about 2.22 
degrees. If the foliation had developed after a certain 
amount of initial deformation, the maximum value of 
(0' - O) would be less than 2.22 degrees. 

Thus. according to this model, it is expected that the 
angle between the foliation and the XY-plane will be very 
small. In most cases the angle will be too small to be 
detected in the field. The foliation would then appear to be 
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maximum angular divergence would be obtained when ";-2 
= ~-l. Thus. for a 60 per cent shortening along the 
).3 - axis, the angular divergence would be 14.2 ° when ).2 
= 21. For different values of shortening along the 
'~.3 - axis, Table 1 compares the values of angular diver- 
gence for the two cases, namely when 22 = 1 and when ,i._, 
= ,;.t. The Table shows that in the present context, this 
model would be relevant when the shortening (including 
the local shortening at the fold-hinge and limbs) is rather 
high. 

CONCLUSIONS 

Fig. 4. Change in orientation of the X-axis and a material line when s, 
= 1. It is assumed that the material line coincided with the X-axis of the 
infinitesimal strain ellipse. The maximum possible divergence between 
the two lines is 2.2 degree~ 7( -- tan ¢,) represents the simple shear part of 

the deformation. 

approximately perpendicular to the direction of maxi- 
mum shortening. However, this small angular diver- 
gence is of considerable theoretical importance, since a 
fairly large amount of shear strain can now develop along 
the foliation. For instance, if s, = 1 and 7 = 1, the angle 
(0' - 0) as calculated from (8) and (11), shows a small 
value of 1.2 degrees. The shear strain 3" on the foliation 
will, however, be as large as 1.5. 

It has been assumed in the foregoing discussion that the 
foliation is initiated parallel to the XY-plane and is 
subsequently rotated in the same continuous defor- 
mation. There is, however, no criterion available to prove 
(or, for that matter, disprove) that the foliation is initiated 
along the X Y-plane. The assumption has been made, 
because, as yet, it gives the most general explanation for 
the development of shear strain along the foliation 
and for the approximate parallelism of the final orient- 
ations of the foliation and the X Y-plane. In particular, 
this theoretical model does not require an assumption 
of large shortening; the angular divergence always 
remains small (i.e. less than 5.15 degrees for simple shear 
and still smaller for other types of deformation), whatever 
be the shortening along the Z-axis. Hobbs et  al. (1976, p. 
242) have considered the possibility that the foliation is 
initiated parallel to a plane of high shear strain. The angle 
between the X Y-plane and the planes of maximum shear 
strain is 

\zt  / 

(Jaeger 1964, p. 38, Ramsay 1967, p. 153), where 2 t and 23 
are the quadratic elongations parallel to X and Z, 
respectively. Hence, it is possible to have a very small angle 
if(23/2~ ) is sufficiently small. For instance, for plane strain 
(i.e. when 22 = 1), this model predicts that the angle 
between the X Y-plane and the lines of maximum shear 
strain will be less than 10 degrees when the shortening 
along the 23 - axis is in excess of 60 per cent (Hobbs e t  al. 

1976, p. 242). It may be pointed out that, for the same 
value of shortening, the angle would be larger if2 z > I ; the 

That the axial-plane foliation may deviate from the 
X Y-plane is certainly not a new idea. A passive early 
foliation may rotate as a material plane in a second 
deformation. As pointed out by Ramsay (1967) and by 
Bayly (1974), its final orientation may not then coincide 
with the X Y-plane for the combined deformation. De- 
pending on the nature of the two deformations, the 
deviation may be large or small. In this analysis, however, 
we are concerned with a single continuous rotational 
deformation. It is common knowledge (Bayly 1974, Dzis 
1976, Elliott 1972, Ghosh & Sengupta 1973, Ghosh 1975, 
Matthews et  al. 1971, 1976, Owen 1973, Ramberg & 
Ghosh 1977, Williams 1976) that, if the foliation rotates as 
a material plane at anystage of deformation, then its final 
orientation will deviate from that of the X Y-plane. In 
simple shear deformation, the deviation will always be less 
than 5.15 degrees (Ghosh 1975, p. 207). The preceding 
analysis has shown that, if the deformation is by combined 
pure- and simple- shears, then, the deviation will be still 
smaller. However, because of this deviation, a consider- 
able amount of shear strain may be generated along the 
foliation. This analysis, .therefore, explains how a foliation 
can be approximately parallel to the X Y-plane and yet be 
a plane of shearing. In addition, if s, is sufficiently large, 
the foliation will make a very small angle with the 
direction of movement (x-axis)of simple shear part of the 
deformation. This would explain the development of a 
mylonitic foliation on which a considerable amount of 
shear has taken place and which occurs at very low angles 
with both the X Y-plane and the thrust plane. Moreover, 
in rotational deformation, there must be a component of 
shearing stress along the foliation. It is likely that these 
shearing stresses are mainly responsible for the develop- 
ment of discrete surfaces of slip along the foliation 
(Dieterich 1969). 

Table 1. Angle between X Y-plane and lines of maximum shear strain 

Percentage of Angle (in degrees} between X ?'-plane 
shortening and lines of maximum shear strain 

along 23 - axis when 2 z -- 1 when 2, = .;-1 

30 26.1 30.4 
40 19.8 24.9 
50 14.0 19.5 
60 9.1 14.2 
70 5.1 9.3 
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